

Assessing vulnerability of the U.S. Atlantic sea scallop fishery to climate change: **IDENTIFYING LIFE STAGE SENSITIVITIES & STRESS THRESHOLDS**

Halle Berger¹, Samantha Siedlecki¹, Catherine Matassa¹, Celine King², Shannon Meseck³ ¹University of Connecticut, Department of Marine Sciences, ²Fairfield University, ³NOAA Northeast Fisheries Science Center, Ecosystems & Aquaculture

BACKGROUND

The Northeast U.S. Atlantic sea scallop fishery is valued at \$500+ million/year

PROJECT GOAL = quantitatively relate changing ocean conditions to sea scallop population vulnerability to identify vital life stages & candidates for future fishing zones

Societal, biological, physical & chemical factors comprise the multiple drivers that influence the <u>vulnerability</u> of the sea scallop fishery to change—habitat and life history likely play a key role (Rheuban et al. 2018)

Managers & industry stakeholders are concerned that changing ocean conditions will cause declines in harvest & revenue

• Literature synthesis \rightarrow life stage sensitivity scores & stress thresholds for OA and warming (methods adapted from Hodgson et al. 2016 & Berger et al. 2021)

Sea scallop habitats <u>currently</u> experience suboptimal carbonate conditions that are projected to worsen under climate change despite partial compensation from warming (Siedlecki et al. 2021)

Year of Ω under 1.5

KEY FINDINGS

- 1. Scallop life stages are sensitive to both warming and OA
- 2. Hard to pinpoint thresholds from lab experiment treatment levels
- 3. More multi-stressor studies needed for early & late life stages

NEXT STEPS

Vulnerability estimated from sensitivity scores & <u>exposure</u> scores derived from regional ocean models, larval transport, &

PRELIMINARY LITERATURE SYNTHESIS RESULTS J

purple & red = medium & high sensitivity ? = unknown or based on related species

*Please let me know if I'm missing any key papers!

Life stage	Warming	OA	Interaction
Gametes/ Embryo	?	Reduced fertilization & development? (pH 7.4, pCO ₂ 3600 μatm, Ω _{arag} 0.9; Barros et al. 2013)	?
Larva	Increased growth until maximum reached (17°C; Munroe et al. 2018)	Reduced growth (pH 7.5, pCO ₂ 1400 μatm, Ω _{arag} 0.7; Milke et al. in prep)	?
Juvenile	Increased growth until maximum reached	Reduced growth (pH 7.3, pCO ₂ 1200 μatm,	Reduced energy – nonlinear (12°C x pH 7.3, pCO ₂ 1200 μ atm,

benthic adult distributions under present & future conditions

Halle Berger MS

@BergerHalle

halle.berger@uconn.edu \searrow

Ω_{arag} 0.7; Cameron 2020 & $\Omega_{arag} 0.7$; Cameron 2020 & (15°C; Coleman et al. 2022) *Pousse et al. in prep) Pousse et al. in prep)* Reduced gametogenesis? Increased gametogenesis Adult (pH 7.1, pCO₂ 5600 μatm, (12°C; MacDonald et al. 1986) Ω_{arag} 0.3; Boulais et al. 2017)

References

Hodgson et al. 2016, *PLoS ONE* Barros et al. 2013, J. Exp. Mar. Biol. Ecol. MacDonald et al. 1986, *Marine Biology* Berger et al. 2021, *AGU Advances* Boulais et al. 2017, Scientific Reports Munroe et al. 2018, Fisheries Research Rheuban et al. 2018, *PLoS ONE* Cameron 2020 Dissertation Coleman et al. 2022, Aquaculture Siedlecki et al. 2021, *Elementa*

Funding

Template by Animate Your Science

