	State	SLR Scenario	Time Period	Administration Status	Description
Delaware		low (0.5m); intermediate (1.0m); high (1.5m)	by year 2100 (89 years)	Established as a DNREC policy	Scenarios use present-day and predicted future sea levels in the year 2100. Designed to account for varying mean tide levels and projected flooding for coastal storm surges
Maryland		Steady State: 3.1 mm/yr or 0.57 m by 2025 Average Accelerated: 1 m SIR Worst Case/Max Rate: 0.53 m 0.38 m; 1.47 m	by year 2025 (14 years) by year 2100 (89 yrs) 2025 (14 yrs); 2050 (39 yrs); 2100 (89 yrs)	MDNR issued a climate change policy in 2010. MDNR developed a partnership with USGS to develop a sir inundation model for Worcester County.	Incorporate the IPCC scenarios and the possibility of accelerated melting. Steady state based on the long-term historic rate of sir of the area. Average accelerated based on averaging the IPCC projections. Max rate based on max range of all IPCC models.
New York		 SLR: 2020s (2 to 5 in); 2050s (7 to 12 in); 2080s (12 to 23 in) SLR with Rapid Ice-melt: 2020s (5 to 10 in); 2050s (19-29 in); 2080s (41 to 55 in) 	10 yrs; 40 yrs; 70 yrs 11 yrs; 40 yrs; 70 yrs	SLR Task Force recommendations have been given to NY legislature for review and approval	The NY State Climate Action Council is using these projections as the foundation for its risk assessments and recommendations. Projections are supported by empirical data documenting recent SLR in NY.
New Jersey Virginia:		low (0.5 m); intermediate (1.0 m); high (1.5 m) low (0.5 m); intermediate (1.0 m); high (1.5 m) with storm surge	by year 2100 (89 yrs) by year 2100 (89 yrs)	The New Jersey Department of Environmental Protection issued a Global Warming Response Act Recommendation Report that focuses primarily on greenhouse gas reduction strategies. NI has started a Coastal Vulnerability Assessment Protocol and Coastal Evacuation mapping and planning.	The New Jersey Coastal Management Program is developing a Vulnerability Assessment Protocol to identify the potential impacts of coastal hazards and sir on the built and natural environment. Showed storm inundation for coastal locations from a category Throught category 5 hurricane. Then added sir scenarios on the inundation projections to show how coastal vulnerability will change
viiginia:	Hampton Roads District	0.39 m; 1.0 m 0.5 m; 1.0 m, 2.0 m	by year 2100 (89 yrs) by year 2100 (89 yrs)		National Wildlife Federation used SLAMM to perform a sir impact analysis. Used IPCC scenarios and additional 1 m, 1.5 m, and 2.0 m scenarios. The Governors Commission on Climate Change referenced 0.39 m sir. 1 m sir scenario served as a medium benchmark between IPCC and worst-case scenario d 2.2 m sir. Analysis conducted by the Virginia Institute of Marine Science to model the impact of a major storm event (Hurricane Isabel) modified by sir.
N	Middle Peninsula District orthern Virginia Regional District	1 ft Steady State: 1 foot (3.2 mm/yr); with storm surge: 11 feet Average Accelerated: 3.8 feet (11.6 mm/yr); with storm surge: 13.8 feet Worst Case: 5.2 feet (16 mm/yr); with storm surge: 15.2 feet	by year 2050 (39 yrs) by year 2100 (89 yrs) by year 2100 (89 yrs) by year 2100 (89 yrs)	Middle Peninsula Planning District Commission is in the midst of a 3 year endeavor to assess and discuss potential climate change and sir impacts to the region. Funded by C2M Northern Virginia Regional Commission developed workgroup to assess the vulnerability of the region to inundation from sir and flooding from storm surge. Used Worcester County, MD SLR Response Study as a case study	Assessed the economic and ecological impacts of sir for select vulnerable areas. The steady state is the observed historic trend rate at Washington D.C. gage. (NOAA). (plus 10 feet of storm surge). The accelerated state is the projected rate based on historical data and predicted global warming trends. (IPCC). (plus 10 feet of storm surge). Highest projected rate for the mid-Atlantic and Chesapeake Bay regions. (plus 10 feet of storm surge).
IPCC		18-59 cm	by year 2100 (89 yrs)		Does not take into account ice melt