Mapping and Visualizing SLR and Coastal Flooding Impacts

Doug Marcy NOAA Coastal Services Center

Preparing for the Rising Tide: Adapting to Climate Change in the Mid-Atlantic

December 10 , 2012

NOAA Coastal Services Center INKING PEOPLE, INFORMATION, AND TECHNOLOGY

Sea Level Rise Projections (based on various climate scenarios)

Planning for Sea Level Rise

Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future – NRC, 2012

Earthquakes could cause an instantaneous rise of 1m

NOAA Coastal Services Center

Global Sea Level Rise Scenarios for the United States National Climate Assessment http://www.cpo.noaa.gov/reports/sealevel/

Scenario	SLR by 2100 (m)*	SLR by 2100 (ft)*
Highest	2.0	6.6
Intermediate-High	1.2	3.9
Intermediate-Low	0.5	1.6
Lowest	0.2	0.7

* Using mean sea level in 1992 as a starting point.

NOAA Coastal Services Center LINKING PEOPLE, INFORMATION, AND TECHNOLOGY

State, Regional, and County Needs

- Assistance with collection of consistent, standardized elevation data and avoidance of duplication
- Federal agency guidance and justification for flood, tide, and storm elevations for coastal areas to use for creating inundation models
- Methods and standards for mapping coastal inundation
- Simple sea level rise (SLR) visualization tools that show highrisk areas with possible future flooding problems so that land acquisition and adaptation planning can start now

When It Comes to Flood Mapping or Sea Level Rise Projection, Elevation Data Is the Key . . .

 2009 National Research Council report "Mapping the zone: Improving Flood Map Accuracy"

Topographic/bathymetric data is the most important factor in determining the accuracy of flood maps

• Climate Change Science Program SAP 4.1, "Coastal Elevations and Sensitivity to Sea-Level Rise"

Sea level rise mapping requires high-resolution elevation data (Current national datasets {30m DEMs} are not adequate)

Importance of Elevation Data

Profile in Charleston, South Carolina

10-meter NED data (1/3 arc second)

30-meter NED data (1 arc second)

Lidar data

NED – National Elevation Dataset

In Charleston, South Carolina Vulnerable Areas Are Lower Than We Thought

Digital Elevation Model (DEM) Accuracy and Mapping Results

3-meter lidar DEM VA = ~20 centimeters) 10-meter NED DEM (VA = ~1 meter)

0.5-meter SLR

 \bigcirc

0.5-meter SLR + 1 root mean square error (RMSE)

Build Best Terrain Available

0 3

Add to

lick and drag to select area to download

🔇) - C 🗙 🏠 🗋 http

The N

0 0

A 🗧 XY 0 M 21 * E 0 20 5 6 0 Downloads Pocuments

NED

Raw Points/Breaklines

Resolution Requirements

10-meter Resolution

The Ocean Is Not a Flat Surface (especially in bays and estuaries)

Vertical Transformation

Using VDatum to convert between tidal, orthometric, and ellipsoidal datums

- Vertical Datum Transformation Tool
- Developed jointly by NOAA's Office of Coast Survey and the National Geodetic Survey
- Provides a method to accurately combine topographic (orthometric) and bathymetric (tidal) elevation data
- Application is limited to the region it was developed for

Integrated Bathy/Topo DEM

State, Regional, and County Needs

- Simple visualization tools
- Show potential impacts of SLR scenarios
- Show how everyday tidal flooding will become worse and more frequent

Building on local pilot studies and recommendations from communities of practice

SEA LEVEL RISE IMPACTS FOR WILMINGTON, DELAWARE

Sea Level Rise: 4 ft

Y /	1	4ft.	This map or inunda rise. Use extent.
		3ft.	The map potential location, erosion, construc
2 ?		2ft.	shown a during ar high wat cause da farther in
	+	1ft.	Y Place sea level
			Note: Flo moment
	+	Oft.	View the

This map shows potential flooding, or inundation, caused by sea level rise. Use the slider bar to view the extent.

The map illustrates the scale of potential flooding, not the exact location, and does not account for erosion, subsidence, or future construction. Water levels are shown as they would appear during an average high tide (mean high water). Rising sea levels will cause daily high tides to reach farther inland.

Y Places of interest vulnerable to sea level rise.

Note: Flood layers may take a moment to load.

View the <u>Flood Frequency</u> <u>Predictions</u>

This pilot project is a collaborative effort of NOAA, the U.S. Geological Survey, and the Delaware Department of Natural Resources.

US DOC | NOAA | NOS NOAA Coastal Services Center Privacy policy Questions or Comments? <u>Contact CSC</u> Updated May, 2009

USGS and the Gulf of Mexico

The orange line marks the edge of the Sea Level Rise map. Move the slider to change the visible area.

Hold Shift and drag to zoom in to a particular area.

The map illustrates the scale of potential flooding, not the exact location, and does not account for erosion, subsidence, or future construction. Water levels are shown as they would appear during an average high tide. Rising sea levels will cause daily high tides to reach farther inland.

Select a scenario to view the extent of potential flooding, or inundation, caused by 1 foot, 3 foot, or 6 foot sea level rise on coastal Alabama and Mississippi.

Addressing the Needs to Build a Better Tool

- 1. Sea Level Rise and Inundation Community Workshop "Executive Summary" (December 2009) www.csc.noaa.gov/publications/inundation-workshop.html
 - Defining needed data and tools for adaptation planning
- 2. Technical Considerations for Use of Geospatial Data in Sea Level Change Mapping and Assessment (September 2010) www.csc.noaa.gov/publications/slc_tech.pdf
 - Technical guidance for sea level change monitoring and mapping
- 3. Coastal Sea-Level Change Societal Challenge Needs Assessment Report (October 2011) – www.floods.org/acefiles/documentlibrary/committees/Coastal/NOAA_Coastal_Sea_Level_Change_Societal_Chal lenge_Needs_Assessment_Report.pdf
 - Defining needed tools, education, and communication for decision-making

NOAA Coastal Services Center INKING PEOPLE, INFORMATION, AND TECHNOLOGY

Sea Level Rise and Coastal Flooding Impacts Viewer

www.csc.noaa.gov/slr

* Working with U.S. Geological Survey, Sea Grant, Gulf Coast Services Center, Digital Coast Partners, National Ocean Service's Center for Operational Oceanographic Products and Services (CO-OPS), Dewberry, University of South Carolina, Bureau of Labor Statistics.

Current Geographies

Impacts of Sea Level Rise

Visualize impacts for mean higher high water (MHHW) 6-foot SLR scenarios overlaid on aerial imagery, street map, and terrain map. Photos of SLR on individual structures will illustrate site-specific impacts.

States Department of Commerce | National Oceanic and Atmospheric Administration | National Ocean Service W

Pa

Contact Us | Privacy Policy | Link Disclaimer | USA.gov

🔺 🏴 🗍 📶 🕻

7-53 PM

10/23/2012

Communicate Mapping Confidence

Visualize the mapping confidence of inundation area based on uncertainty of elevation data and MHHW tidal surface.

Sea Level Rise and Coastal × Sea Level Rise and	d Coastal ×	and the provident of the second se		
	wer/#			= لا
Sea Level Rise and Coastal Flo National Oceanic and Atmospheric Administration	oding Impacts			9
Sea Level Rise Confidence Marsh Vulnerability Flood Frequency Mapping Confidence (2)	Gate Nati Recreation Area Gate Presto	Emeryville Pledmont Poakland	California Canyon Los Trampao Regional Park orial ark	Glossary Share Glossary Streets
Legend High Confidence	Cristin Francisco Faix Goton Goto Faix Francisco	Alameda	1400	San Ramon
Low Confidence Area Not Mapped Overview	dohn San Francisco ^{Melacon} San Mateo San Bruno	Son Francisco Bay	n Idro Elsko Chabot Regional Park Castro Valley	Alamoda -
The inundation areas depicted in the Sea Level Rise tab are not as precise as they may appear.	Daly City Mountain State Park Colma South San Francisco		San Lorenzo Hayward	Pleasanto
Blue areas denote a high confidence of inundation, orange areas denote a high degree of uncertainty, and unshaded areas denote a high confidence that these areas will be dry given the chosen water level.	Pacifica Shierp Park San Bruno Milibrae		Girm Regional Park	Sunt
In this application 80% is considered a high degree of confidence such that, for example, the blue areas denote locations that may be v Understanding the Map	Burlingame Goldan Gate National Recreation Area	Foster City	Cryste Hills	20 km
Additional Information	Montara	Mateo	Park	10 mi

W

P

Privacy Policy

Visualize Marsh Impacts

Visualize the impacts of SLR scenarios on marshes using Coastal Change Analysis Program (C-CAP) data.

🗿 🖉 🚞 🖸 💽 🕨 🔌 💽

Social and Economic Vulnerability

Include Social Vulnerability Index (SOVI) from USC and data from Bureau of Labor Statistics (BLS) showing impacts on society and economy.

Social Vulnerability Index (Cutter)

Bureau of Labor Statistics (Department of Labor)

- Businesses
- Employees
- Wages

Coastal Flood Frequency

Communicate that today's flood is tomorrow's high tide. Use three years of observed water level data at National Ocean Service National Water Level Observation Network (NWLON) stations to show increased 0.5m 270 times/30 days frequency of everyday flooding. 1.0m 667 times/13<u>5 days</u>

🔺 🕨 📋 atl 🕩 10/23/2012

Future: Increase Geography and Regional Implementation

- San Francisco Bay Adapting to Rising Tides and OCOF
- California Coastal Conservancy
- New Jersey Rutgers
- EPA Climate Ready Estuaries
- South Florida Climate Compact (Seven / 50)
- TNC and U. of Southern MS Gulf of Mexico Coastal Resilience Project
- EPA Point Source Outfalls
- National Park Service Coastal Parks Assessment
- U.S. Army Corps Projects Evaluation
- HI Sea Grant and U. of Hawaii School of Ocean and Earth Sci. (NOAA Coastal Storms Program)
- NCCOS N. Gulf Ecological Effects of SLR project

- Louisiana (on hold)
- NY, MD, VA
- Pacific
- Northeast
- Southeast
- Caribbean
- Great Lakes

Data Distribution

Lots of Layers

- Conditioned DEMs
- SLR layers
- Marsh migration layers
- Uncertainty layers
- Shallow coastal flooding layer
- Social Vulnerability Index data
- Bureau of Labor Statistics data

Lots of Ways to Distribute

- Raster geodatabases via HTTP
- Representational State Transfer (REST) page
- Feature and Image services
- Enabling mash-up applications

Available via NOAA Digital Coast

www.csc.noaa.gov/digitalcoast/

DIGITAL C@AST				
NOAA Coastal Services Center	Home	About	Data	Tools

Tools

Sea Level Rise and Coastal Flooding Impacts Viewer

NOAA Coastal Services Center

Support 💦 🔿 Get It Now

Overview

Being able to visualize potential impacts from sea level rise is a powerful teaching and planning tool, and the Sea Level Rise Viewer brings this capability to coastal communities. A slider bar is used to show how various levels of sea level rise will impact coastal communities. The initial project areas include Mississippi, Alabama, and parts of Texas and Florida, with additional coastal counties to be added in the near future. Visuals and the accompanying data and information cover sea level rise inundation, uncertainty, flood frequency, marsh impacts, and socioeconomics.

Features

Training

Displays potential future sea levels

Approaches •

In Action

Provides simulations of sea level rise at local landmarks

Communicates the spatial uncertainty of mapped sea levels

Models potential marsh migration due to sea level rise

Overlays social and economic data onto potential sea level rise

Examines how tidal flooding will become more frequent with sea level rise

Acknowledgements

The NOAA Coastal Services Center would like to acknowledge those organizations that provided direct content used in this tool or feedback, ideas, and reviews over the course of the tool's development. Specifically the Center would like to acknowledge the <u>following groups</u>.

NOAA Coastal Services Center LINKING PEOPLE, INFORMATION, AND TECHNOLOGY

Questions?

www.csc.noaa.gov/slr

doug.marcy@noaa.gov

